Cargando…
A single latent channel is sufficient for biomedical glottis segmentation
Glottis segmentation is a crucial step to quantify endoscopic footage in laryngeal high-speed videoendoscopy. Recent advances in deep neural networks for glottis segmentation allow for a fully automatic workflow. However, exact knowledge of integral parts of these deep segmentation networks remains...
Autores principales: | Kist, Andreas M., Breininger, Katharina, Dörrich, Marion, Dürr, Stephan, Schützenberger, Anne, Semmler, Marion |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395348/ https://www.ncbi.nlm.nih.gov/pubmed/35995933 http://dx.doi.org/10.1038/s41598-022-17764-1 |
Ejemplares similares
-
Long-term performance assessment of fully automatic biomedical glottis segmentation at the point of care
por: Groh, René, et al.
Publicado: (2022) -
BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation
por: Gómez, Pablo, et al.
Publicado: (2020) -
Re-Training of Convolutional Neural Networks for Glottis Segmentation in Endoscopic High-Speed Videos
por: Döllinger, Michael, et al.
Publicado: (2022) -
OpenHSV: an open platform for laryngeal high-speed videoendoscopy
por: Kist, Andreas M., et al.
Publicado: (2021) -
Interdependencies between acoustic and high-speed videoendoscopy parameters
por: Schlegel, Patrick, et al.
Publicado: (2021)