Cargando…
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a parameterized quantum circuit on a training data set, and subsequently making predictions on a testing data set (i.e., generalizing). In this work, we provide a comprehensive study of generalization performance in QML a...
Autores principales: | Caro, Matthias C., Huang, Hsin-Yuan, Cerezo, M., Sharma, Kunal, Sornborger, Andrew, Cincio, Lukasz, Coles, Patrick J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395350/ https://www.ncbi.nlm.nih.gov/pubmed/35995777 http://dx.doi.org/10.1038/s41467-022-32550-3 |
Ejemplares similares
-
Out-of-distribution generalization for learning quantum dynamics
por: Caro, Matthias C., et al.
Publicado: (2023) -
Variational consistent histories as a hybrid algorithm for quantum foundations
por: Arrasmith, Andrew, et al.
Publicado: (2019) -
Noise-induced barren plateaus in variational quantum algorithms
por: Wang, Samson, et al.
Publicado: (2021) -
Cost function dependent barren plateaus in shallow parametrized quantum circuits
por: Cerezo, M., et al.
Publicado: (2021) -
Quantum Simulation of Tunneling in Small Systems
por: Sornborger, Andrew T.
Publicado: (2012)