Cargando…
Study on image data cleaning method of early esophageal cancer based on VGG_NIN neural network
In order to clean the mislabeled images in the esophageal endoscopy image data set, we designed a new neural network VGG_NIN. Based on the new neural network structure, we developed a method to clean the mislabeled images in the esophageal endoscopy image data set. To verify the effectiveness of the...
Autores principales: | Li, Zhengwen, Wu, Runmin, Gan, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395400/ https://www.ncbi.nlm.nih.gov/pubmed/35995817 http://dx.doi.org/10.1038/s41598-022-18707-6 |
Ejemplares similares
-
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
por: Sengupta, Abhronil, et al.
Publicado: (2019) -
VGG-UNet/VGG-SegNet Supported Automatic Segmentation of Endoplasmic Reticulum Network in Fluorescence Microscopy Images
por: Daniel, Jesline, et al.
Publicado: (2022) -
Evolution of NIN and NIN-like Genes in Relation to Nodule Symbiosis
por: Liu, Jieyu, et al.
Publicado: (2020) -
Zero-Watermarking Algorithm for Medical Image Based on VGG19 Deep Convolution Neural Network
por: Han, Baoru, et al.
Publicado: (2021) -
Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification
por: Alshammari, Abdulaziz
Publicado: (2022)