Cargando…
Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches
Ionic liquids (ILs) have emerged as suitable options for gas storage applications over the past decade. Consequently, accurate prediction of gas solubility in ILs is crucial for their application in the industry. In this study, four intelligent techniques including Extreme Learning Machine (ELM), De...
Autores principales: | Nakhaei-Kohani, Reza, Atashrouz, Saeid, Hadavimoghaddam, Fahimeh, Bostani, Ali, Hemmati-Sarapardeh, Abdolhossein, Mohaddespour, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395420/ https://www.ncbi.nlm.nih.gov/pubmed/35995904 http://dx.doi.org/10.1038/s41598-022-17983-6 |
Ejemplares similares
-
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023) -
Modeling the solubility of light hydrocarbon gases and their mixture in brine with machine learning and equations of state
por: Mohammadi, Mohammad-Reza, et al.
Publicado: (2022) -
Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state
por: Mohammadi, Mohammad-Reza, et al.
Publicado: (2021) -
Modeling solubility of CO(2)–N(2) gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022) -
Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state
por: Madani, Seyed Ali, et al.
Publicado: (2021)