Cargando…
Hybrid-based Bayesian algorithm and hydrologic indices for flash flood vulnerability assessment in coastal regions: machine learning, risk prediction, and environmental impact
Natural hazards and severe weather events are a matter of serious threat to humans, economic activities, and the environment. Flash floods are one of the extremely devastating natural events around the world. Consequently, the prediction and precise assessment of flash flood-prone areas are mandator...
Autores principales: | Abu El-Magd, Sherif Ahmed, Maged, Ali, Farhat, Hassan I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395492/ https://www.ncbi.nlm.nih.gov/pubmed/35352224 http://dx.doi.org/10.1007/s11356-022-19903-7 |
Ejemplares similares
-
Assessment of Vulnerability to Extreme Flash Floods in Design Storms
por: Kim, Eung Seok, et al.
Publicado: (2011) -
Vulnerability of Coastal Communities from Storm Surge and Flood Disasters
por: Bathi, Jejal Reddy, et al.
Publicado: (2016) -
A Place-based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States
por: Khajehei, Sepideh, et al.
Publicado: (2020) -
Toxic Tides and
Environmental Injustice: Social Vulnerability
to Sea Level Rise and Flooding of Hazardous Sites in Coastal California
por: Cushing, Lara J., et al.
Publicado: (2023) -
Environmental hydrology /
por: Ward, Andrew D.
Publicado: (2004)