Cargando…
Machine-learning-based contrast-enhanced computed tomography radiomic analysis for categorization of ovarian tumors
OBJECTIVES: This study aims to evaluate the diagnostic performance of machine-learning-based contrast-enhanced CT radiomic analysis for categorizing benign and malignant ovarian tumors. METHODS: A total of 1,329 patients with ovarian tumors were randomly divided into a training cohort (N=930) and a...
Autores principales: | Li, Jiaojiao, Zhang, Tianzhu, Ma, Juanwei, Zhang, Ningnannan, Zhang, Zhang, Ye, Zhaoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395674/ https://www.ncbi.nlm.nih.gov/pubmed/36016613 http://dx.doi.org/10.3389/fonc.2022.934735 |
Ejemplares similares
-
Preoperative Nomogram for Differentiation of Histological Subtypes in Ovarian Cancer Based on Computer Tomography Radiomics
por: Zhu, Haiyan, et al.
Publicado: (2021) -
Preoperative Prediction of Metastasis for Ovarian Cancer Based on Computed Tomography Radiomics Features and Clinical Factors
por: Ai, Yao, et al.
Publicado: (2021) -
Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy
por: Zhang, Lu, et al.
Publicado: (2021) -
Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic Lymphoma Based on Radiomics and Machine Learning in Contrast-Enhanced Computer Tomography
por: Xu, Hanyue, et al.
Publicado: (2021) -
The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study
por: Gao, Xujie, et al.
Publicado: (2023)