Cargando…
An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like machine learning (ML) and deep neural networks are becoming a de-facto standard. Nowa...
Autores principales: | Baroni, Andrea, Glukhov, Artem, Pérez, Eduardo, Wenger, Christian, Calore, Enrico, Schifano, Sebastiano Fabio, Olivo, Piero, Ielmini, Daniele, Zambelli, Cristian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395721/ https://www.ncbi.nlm.nih.gov/pubmed/36017177 http://dx.doi.org/10.3389/fnins.2022.932270 |
Ejemplares similares
-
Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications
por: Ielmini, D., et al.
Publicado: (2017) -
A Scalable Bidimensional Randomization Scheme for TLC 3D NAND Flash Memories
por: Favalli, Michele, et al.
Publicado: (2021) -
Bipolar switching in chalcogenide phase change memory
por: Ciocchini, N., et al.
Publicado: (2016) -
A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing
por: Muñoz-Martin, Irene, et al.
Publicado: (2021) -
Charge Configuration Memory Devices: Energy Efficiency
and Switching Speed
por: Mraz, Anze, et al.
Publicado: (2022)