Cargando…
ApaNet: adversarial perturbations alleviation network for face verification
Albeit Deep neural networks (DNNs) are widely used in computer vision, natural language processing and speech recognition, they have been discovered to be fragile to adversarial attacks. Specifically, in computer vision, an attacker can easily deceive DNNs by contaminating an input image with pertur...
Autores principales: | Sun, Guangling, Hu, Haoqi, Su, Yuying, Liu, Qi, Lu, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395815/ https://www.ncbi.nlm.nih.gov/pubmed/36035322 http://dx.doi.org/10.1007/s11042-022-13641-1 |
Ejemplares similares
-
APA for ProtoDUNE
por: Ordan, Julien Marius, et al.
Publicado: (2018) -
Compadrazgo en Apas
por: Uribe Wood, Elena
Publicado: (1982) -
Prediction of face age progression with generative adversarial networks
por: Sharma, Neha, et al.
Publicado: (2021) -
CAFuncAPA: a knowledgebase for systematic functional annotations of APA events in human cancers
por: Huang, Kexin, et al.
Publicado: (2023) -
Universal adversarial examples and perturbations for quantum
classifiers
por: Gong, Weiyuan, et al.
Publicado: (2021)