Cargando…
Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed
Rapeseed (Brassica napus) is an allopolyploid hybrid (AACC genome) of turnip rape (B. rapa, genome: AA) and vegetable cabbage (B. oleraceae, genome: CC). Rapeseed oil is one of the main vegetable oils used worldwide for food and other technical purposes. Therefore, breeding companies worldwide are i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396215/ https://www.ncbi.nlm.nih.gov/pubmed/36017265 http://dx.doi.org/10.3389/fpls.2022.954976 |
_version_ | 1784771880086929408 |
---|---|
author | Moebes, Michael Kuhlmann, Heike Demidov, Dmitri Lermontova, Inna |
author_facet | Moebes, Michael Kuhlmann, Heike Demidov, Dmitri Lermontova, Inna |
author_sort | Moebes, Michael |
collection | PubMed |
description | Rapeseed (Brassica napus) is an allopolyploid hybrid (AACC genome) of turnip rape (B. rapa, genome: AA) and vegetable cabbage (B. oleraceae, genome: CC). Rapeseed oil is one of the main vegetable oils used worldwide for food and other technical purposes. Therefore, breeding companies worldwide are interested in developing rapeseed varieties with high yields and increased adaptation to harsh climatic conditions such as heat and prolonged drought. One approach to studying the mechanism of the epigenetically regulated stress response is to analyze the transcriptional changes it causes. In addition, comparing the expression of certain genes between stress- and non-stress-tolerant varieties will help guide breeding in the desired direction. Quantitative reverse transcription PCR (RT-qPCR) has been intensively used for gene expression analysis for several decades. However, the transfer of this method from model plants to crop species has several limitations due to the high accumulation of secondary metabolites, the higher water content in some tissues and therefore problems with their grinding and other factors. For allopolyploid rapeseed, the presence of two genomes, often with different levels of expression of homeologous genes, must also be considered. In this study, we describe the optimization of transcriptional RT-qPCR analysis of low-expression epigenetic genes in rapeseed, using Kinetochore Null2 (KNL2), a regulator of kinetochore complex assembly, as an example. We demonstrated that a combination of various factors, such as tissue homogenization and RNA extraction with TRIzol, synthesis of cDNA with gene-specific primers, and RT-qPCR in white plates, significantly increased the sensitivity of RT-qPCR for the detection of BnKNL2A and BnKNL2C gene expression. |
format | Online Article Text |
id | pubmed-9396215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93962152022-08-24 Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed Moebes, Michael Kuhlmann, Heike Demidov, Dmitri Lermontova, Inna Front Plant Sci Plant Science Rapeseed (Brassica napus) is an allopolyploid hybrid (AACC genome) of turnip rape (B. rapa, genome: AA) and vegetable cabbage (B. oleraceae, genome: CC). Rapeseed oil is one of the main vegetable oils used worldwide for food and other technical purposes. Therefore, breeding companies worldwide are interested in developing rapeseed varieties with high yields and increased adaptation to harsh climatic conditions such as heat and prolonged drought. One approach to studying the mechanism of the epigenetically regulated stress response is to analyze the transcriptional changes it causes. In addition, comparing the expression of certain genes between stress- and non-stress-tolerant varieties will help guide breeding in the desired direction. Quantitative reverse transcription PCR (RT-qPCR) has been intensively used for gene expression analysis for several decades. However, the transfer of this method from model plants to crop species has several limitations due to the high accumulation of secondary metabolites, the higher water content in some tissues and therefore problems with their grinding and other factors. For allopolyploid rapeseed, the presence of two genomes, often with different levels of expression of homeologous genes, must also be considered. In this study, we describe the optimization of transcriptional RT-qPCR analysis of low-expression epigenetic genes in rapeseed, using Kinetochore Null2 (KNL2), a regulator of kinetochore complex assembly, as an example. We demonstrated that a combination of various factors, such as tissue homogenization and RNA extraction with TRIzol, synthesis of cDNA with gene-specific primers, and RT-qPCR in white plates, significantly increased the sensitivity of RT-qPCR for the detection of BnKNL2A and BnKNL2C gene expression. Frontiers Media S.A. 2022-08-09 /pmc/articles/PMC9396215/ /pubmed/36017265 http://dx.doi.org/10.3389/fpls.2022.954976 Text en Copyright © 2022 Moebes, Kuhlmann, Demidov and Lermontova. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Moebes, Michael Kuhlmann, Heike Demidov, Dmitri Lermontova, Inna Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title | Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title_full | Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title_fullStr | Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title_full_unstemmed | Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title_short | Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed |
title_sort | optimization of quantitative reverse transcription pcr method for analysis of weakly expressed genes in crops based on rapeseed |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396215/ https://www.ncbi.nlm.nih.gov/pubmed/36017265 http://dx.doi.org/10.3389/fpls.2022.954976 |
work_keys_str_mv | AT moebesmichael optimizationofquantitativereversetranscriptionpcrmethodforanalysisofweaklyexpressedgenesincropsbasedonrapeseed AT kuhlmannheike optimizationofquantitativereversetranscriptionpcrmethodforanalysisofweaklyexpressedgenesincropsbasedonrapeseed AT demidovdmitri optimizationofquantitativereversetranscriptionpcrmethodforanalysisofweaklyexpressedgenesincropsbasedonrapeseed AT lermontovainna optimizationofquantitativereversetranscriptionpcrmethodforanalysisofweaklyexpressedgenesincropsbasedonrapeseed |