Cargando…
A layer-wise fusion network incorporating self-supervised learning for multimodal MR image synthesis
Magnetic resonance (MR) imaging plays an important role in medical diagnosis and treatment; different modalities of MR images can provide rich and complementary information to improve the accuracy of diagnosis. However, due to the limitations of scanning time and medical conditions, certain modaliti...
Autores principales: | Zhou, Qian, Zou, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396279/ https://www.ncbi.nlm.nih.gov/pubmed/36017492 http://dx.doi.org/10.3389/fgene.2022.937042 |
Ejemplares similares
-
A Multimodal Affinity Fusion Network for Predicting the Survival of Breast Cancer Patients
por: Guo, Weizhou, et al.
Publicado: (2021) -
SelfCoLearn: Self-Supervised Collaborative Learning for Accelerating Dynamic MR Imaging
por: Zou, Juan, et al.
Publicado: (2022) -
Voxel‐wise supervised analysis of tumors with multimodal engineered features to highlight interpretable biological patterns
por: Escobar, Thibault, et al.
Publicado: (2022) -
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
por: Chen, Yilong, et al.
Publicado: (2019) -
Multimodal Medical Supervised Image Fusion Method by CNN
por: Li, Yi, et al.
Publicado: (2021)