Cargando…
Binary Simulated Normal Distribution Optimizer for feature selection: Theory and application in COVID-19 datasets
Classification accuracy achieved by a machine learning technique depends on the feature set used in the learning process. However, it is often found that all the features extracted by some means for a particular task do not contribute to the classification process. Feature selection (FS) is an imper...
Autores principales: | Ahmed, Shameem, Sheikh, Khalid Hassan, Mirjalili, Seyedali, Sarkar, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396289/ https://www.ncbi.nlm.nih.gov/pubmed/36034050 http://dx.doi.org/10.1016/j.eswa.2022.116834 |
Ejemplares similares
-
BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection
por: Khalid, Asmaa M., et al.
Publicado: (2022) -
Hybrid Binary Dragonfly Algorithm with Simulated Annealing for Feature Selection
por: Chantar, Hamouda, et al.
Publicado: (2021) -
Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms
por: Pramanik, Payel, et al.
Publicado: (2022) -
A bi-stage feature selection approach for COVID-19 prediction using chest CT images
por: Sen, Shibaprasad, et al.
Publicado: (2021) -
Nature-inspired optimizers: theories, literature reviews and applications
por: Mirjalili, Seyedali, et al.
Publicado: (2019)