Cargando…
A novel meta-analysis based on data augmentation and elastic data shared lasso regularization for gene expression
BACKGROUND: Gene expression analysis can provide useful information for analyzing complex biological mechanisms. However, many reported findings are unrepeatable due to small sample sizes relative to a large number of genes and the low signal-to-noise ratios of most gene expression datasets. RESULTS...
Autores principales: | Huang, Hai-Hui, Rao, Hao, Miao, Rui, Liang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396780/ https://www.ncbi.nlm.nih.gov/pubmed/35999505 http://dx.doi.org/10.1186/s12859-022-04887-5 |
Ejemplares similares
-
CondenseNet with exclusive lasso regularization
por: Ji, Lizhen, et al.
Publicado: (2021) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Graph-regularized dual Lasso for robust eQTL mapping
por: Cheng, Wei, et al.
Publicado: (2014) -
Evaluation of the lasso and the elastic net in genome-wide association studies
por: Waldmann, Patrik, et al.
Publicado: (2013)