Cargando…
Prediction of Bacterial sRNAs Using Sequence-Derived Features and Machine Learning
Small ribonucleic acid (sRNA) sequences are 50–500 nucleotide long, noncoding RNA (ncRNA) sequences that play an important role in regulating transcription and translation within a bacterial cell. As such, identifying sRNA sequences within an organism’s genome is essential to understand the impact o...
Autores principales: | Jha, Tony, Mendel, Jovinna, Cho, Hyuk, Choudhary, Madhusudan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397377/ https://www.ncbi.nlm.nih.gov/pubmed/36016866 http://dx.doi.org/10.1177/11779322221118335 |
Ejemplares similares
-
Impact of bacterial sRNAs in stress responses
por: Holmqvist, Erik, et al.
Publicado: (2017) -
Predicting sRNAs and Their Targets in Bacteria
por: Li, Wuju, et al.
Publicado: (2012) -
Regulatory sRNAs in Cyanobacteria
por: Hu, Jinlu, et al.
Publicado: (2018) -
sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes
por: Livny, Jonathan, et al.
Publicado: (2005) -
The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs
por: Georg, Jens, et al.
Publicado: (2019)