Cargando…
Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets
Cholangiocarcinoma is a form of hepatobiliary cancer with an abysmal prognosis. Despite advances in our understanding of cholangiocarcinoma pathophysiology and its genomic landscape, targeted therapies have not yet made a significant impact on its clinical management. The low response rates of targe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397618/ https://www.ncbi.nlm.nih.gov/pubmed/34551960 http://dx.doi.org/10.1158/0008-5472.CAN-21-0955 |
_version_ | 1784772158571937792 |
---|---|
author | Khorsandi, Shirin Elizabeth Dokal, Arran D. Rajeeve, Vinothini Britton, David J. Illingworth, Megan S. Heaton, Nigel Cutillas, Pedro R. |
author_facet | Khorsandi, Shirin Elizabeth Dokal, Arran D. Rajeeve, Vinothini Britton, David J. Illingworth, Megan S. Heaton, Nigel Cutillas, Pedro R. |
author_sort | Khorsandi, Shirin Elizabeth |
collection | PubMed |
description | Cholangiocarcinoma is a form of hepatobiliary cancer with an abysmal prognosis. Despite advances in our understanding of cholangiocarcinoma pathophysiology and its genomic landscape, targeted therapies have not yet made a significant impact on its clinical management. The low response rates of targeted therapies in cholangiocarcinoma suggest that patient heterogeneity contributes to poor clinical outcome. Here we used mass spectrometry–based phosphoproteomics and computational methods to identify patient-specific drug targets in patient tumors and cholangiocarcinoma-derived cell lines. We analyzed 13 primary tumors of patients with cholangiocarcinoma with matched nonmalignant tissue and 7 different cholangiocarcinoma cell lines, leading to the identification and quantification of more than 13,000 phosphorylation sites. The phosphoproteomes of cholangiocarcinoma cell lines and patient tumors were significantly correlated. MEK1, KIT, ERK1/2, and several cyclin-dependent kinases were among the protein kinases most frequently showing increased activity in cholangiocarcinoma relative to nonmalignant tissue. Application of the Drug Ranking Using Machine Learning (DRUML) algorithm selected inhibitors of histone deacetylase (HDAC; belinostat and CAY10603) and PI3K pathway members as high-ranking therapies to use in primary cholangiocarcinoma. The accuracy of the computational drug rankings based on predicted responses was confirmed in cell-line models of cholangiocarcinoma. Together, this study uncovers frequently activated biochemical pathways in cholangiocarcinoma and provides a proof of concept for the application of computational methodology to rank drugs based on efficacy in individual patients. SIGNIFICANCE: Phosphoproteomic and computational analyses identify patient-specific drug targets in cholangiocarcinoma, supporting the potential of a machine learning method to predict personalized therapies. |
format | Online Article Text |
id | pubmed-9397618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-93976182023-01-05 Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets Khorsandi, Shirin Elizabeth Dokal, Arran D. Rajeeve, Vinothini Britton, David J. Illingworth, Megan S. Heaton, Nigel Cutillas, Pedro R. Cancer Res Convergence and Technologies Cholangiocarcinoma is a form of hepatobiliary cancer with an abysmal prognosis. Despite advances in our understanding of cholangiocarcinoma pathophysiology and its genomic landscape, targeted therapies have not yet made a significant impact on its clinical management. The low response rates of targeted therapies in cholangiocarcinoma suggest that patient heterogeneity contributes to poor clinical outcome. Here we used mass spectrometry–based phosphoproteomics and computational methods to identify patient-specific drug targets in patient tumors and cholangiocarcinoma-derived cell lines. We analyzed 13 primary tumors of patients with cholangiocarcinoma with matched nonmalignant tissue and 7 different cholangiocarcinoma cell lines, leading to the identification and quantification of more than 13,000 phosphorylation sites. The phosphoproteomes of cholangiocarcinoma cell lines and patient tumors were significantly correlated. MEK1, KIT, ERK1/2, and several cyclin-dependent kinases were among the protein kinases most frequently showing increased activity in cholangiocarcinoma relative to nonmalignant tissue. Application of the Drug Ranking Using Machine Learning (DRUML) algorithm selected inhibitors of histone deacetylase (HDAC; belinostat and CAY10603) and PI3K pathway members as high-ranking therapies to use in primary cholangiocarcinoma. The accuracy of the computational drug rankings based on predicted responses was confirmed in cell-line models of cholangiocarcinoma. Together, this study uncovers frequently activated biochemical pathways in cholangiocarcinoma and provides a proof of concept for the application of computational methodology to rank drugs based on efficacy in individual patients. SIGNIFICANCE: Phosphoproteomic and computational analyses identify patient-specific drug targets in cholangiocarcinoma, supporting the potential of a machine learning method to predict personalized therapies. American Association for Cancer Research 2021-11-15 2021-09-22 /pmc/articles/PMC9397618/ /pubmed/34551960 http://dx.doi.org/10.1158/0008-5472.CAN-21-0955 Text en ©2021 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
spellingShingle | Convergence and Technologies Khorsandi, Shirin Elizabeth Dokal, Arran D. Rajeeve, Vinothini Britton, David J. Illingworth, Megan S. Heaton, Nigel Cutillas, Pedro R. Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title | Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title_full | Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title_fullStr | Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title_full_unstemmed | Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title_short | Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets |
title_sort | computational analysis of cholangiocarcinoma phosphoproteomes identifies patient-specific drug targets |
topic | Convergence and Technologies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397618/ https://www.ncbi.nlm.nih.gov/pubmed/34551960 http://dx.doi.org/10.1158/0008-5472.CAN-21-0955 |
work_keys_str_mv | AT khorsandishirinelizabeth computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT dokalarrand computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT rajeevevinothini computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT brittondavidj computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT illingworthmegans computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT heatonnigel computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets AT cutillaspedror computationalanalysisofcholangiocarcinomaphosphoproteomesidentifiespatientspecificdrugtargets |