Cargando…

Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology

Detalles Bibliográficos
Autores principales: Zhu, Xiao, Peng, Bo, Yi, QiFeng, Liu, Jia, Yan, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398454/
https://www.ncbi.nlm.nih.gov/pubmed/36017011
http://dx.doi.org/10.3389/fmed.2022.964157
_version_ 1784772331685543936
author Zhu, Xiao
Peng, Bo
Yi, QiFeng
Liu, Jia
Yan, Jin
author_facet Zhu, Xiao
Peng, Bo
Yi, QiFeng
Liu, Jia
Yan, Jin
author_sort Zhu, Xiao
collection PubMed
description
format Online
Article
Text
id pubmed-9398454
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93984542022-08-24 Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology Zhu, Xiao Peng, Bo Yi, QiFeng Liu, Jia Yan, Jin Front Med (Lausanne) Medicine Frontiers Media S.A. 2022-08-09 /pmc/articles/PMC9398454/ /pubmed/36017011 http://dx.doi.org/10.3389/fmed.2022.964157 Text en Copyright © 2022 Zhu, Peng, Yi, Liu and Yan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Zhu, Xiao
Peng, Bo
Yi, QiFeng
Liu, Jia
Yan, Jin
Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title_full Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title_fullStr Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title_full_unstemmed Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title_short Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
title_sort corrigendum: prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398454/
https://www.ncbi.nlm.nih.gov/pubmed/36017011
http://dx.doi.org/10.3389/fmed.2022.964157
work_keys_str_mv AT zhuxiao corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology
AT pengbo corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology
AT yiqifeng corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology
AT liujia corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology
AT yanjin corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology