Cargando…
Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398454/ https://www.ncbi.nlm.nih.gov/pubmed/36017011 http://dx.doi.org/10.3389/fmed.2022.964157 |
_version_ | 1784772331685543936 |
---|---|
author | Zhu, Xiao Peng, Bo Yi, QiFeng Liu, Jia Yan, Jin |
author_facet | Zhu, Xiao Peng, Bo Yi, QiFeng Liu, Jia Yan, Jin |
author_sort | Zhu, Xiao |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9398454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93984542022-08-24 Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology Zhu, Xiao Peng, Bo Yi, QiFeng Liu, Jia Yan, Jin Front Med (Lausanne) Medicine Frontiers Media S.A. 2022-08-09 /pmc/articles/PMC9398454/ /pubmed/36017011 http://dx.doi.org/10.3389/fmed.2022.964157 Text en Copyright © 2022 Zhu, Peng, Yi, Liu and Yan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Zhu, Xiao Peng, Bo Yi, QiFeng Liu, Jia Yan, Jin Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title | Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title_full | Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title_fullStr | Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title_full_unstemmed | Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title_short | Corrigendum: Prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
title_sort | corrigendum: prediction model of immunosuppressive medication non-adherence for renal transplant patients based on machine learning technology |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398454/ https://www.ncbi.nlm.nih.gov/pubmed/36017011 http://dx.doi.org/10.3389/fmed.2022.964157 |
work_keys_str_mv | AT zhuxiao corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology AT pengbo corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology AT yiqifeng corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology AT liujia corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology AT yanjin corrigendumpredictionmodelofimmunosuppressivemedicationnonadherenceforrenaltransplantpatientsbasedonmachinelearningtechnology |