Cargando…
SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans
COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for diagnosing COVID-19. All researchers focus their efforts on developing viable methods and ra...
Autores principales: | Smadi, Ahmad Al, Abugabah, Ahed, Al-smadi, Ahmad Mohammad, Almotairi, Sultan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398554/ https://www.ncbi.nlm.nih.gov/pubmed/36033909 http://dx.doi.org/10.1016/j.imu.2022.101059 |
Ejemplares similares
-
Evaluation of E-learning Experience in the Light of the Covid-19 in Higher Education
por: Al-smadi, Ahmad Mohmmad, et al.
Publicado: (2022) -
VGG-COVIDNet: A Novel model for COVID detection from X-Ray and CT Scan images
por: Goyal, Lakshay, et al.
Publicado: (2023) -
LW‐CovidNet: Automatic covid‐19 lung infection detection from chest X‐ray images
por: Ahmed, Noor, et al.
Publicado: (2022) -
D2-CovidNet: A Deep Learning Model for COVID-19 Detection in Chest X-Ray Images
por: Wang, Xin, et al.
Publicado: (2021) -
D(2)BOF-COVIDNet: A Framework of Deep Bayesian Optimization and Fusion-Assisted Optimal Deep Features for COVID-19 Classification Using Chest X-ray and MRI Scans
por: Hamza, Ameer, et al.
Publicado: (2022)