Cargando…
GLD-Net: Deep Learning to Detect DDoS Attack via Topological and Traffic Feature Fusion
Distributed denial of service (DDoS) attacks are the most common means of cyberattacks against infrastructure, and detection is the first step in combating them. The current DDoS detection mainly uses the improvement or fusion of machine learning and deep learning methods to improve classification p...
Autores principales: | Guo, Wei, Qiu, Han, Liu, Zimian, Zhu, Junhu, Wang, Qingxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398712/ https://www.ncbi.nlm.nih.gov/pubmed/36017461 http://dx.doi.org/10.1155/2022/4611331 |
Ejemplares similares
-
KS-DDoS: Kafka streams-based classification approach for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
DDoS attacks hit hard and fast
Publicado: (2020) -
Deep learning approaches for detecting DDoS attacks: a systematic review
por: Mittal, Meenakshi, et al.
Publicado: (2022) -
DDoS attacks: evolution, detection, prevention, reaction, and tolerance
por: Bhattacharyya, Dhruba Kumar, et al.
Publicado: (2016)