Cargando…
A Novel Hybrid Method to Predict PM(2.5) Concentration Based on the SWT-QPSO-LSTM Hybrid Model
PM(2.5) concentration is an important indicator to measure air quality. Its value is affected by meteorological factors and air pollutants, so it has the characteristics of nonlinearity, irregularity, and uncertainty. To accurately predict PM(2.5) concentration, this paper proposes a hybrid predicti...
Autores principales: | Du, Meng, Chen, Yixin, Liu, Yang, Yin, Hang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398715/ https://www.ncbi.nlm.nih.gov/pubmed/36017460 http://dx.doi.org/10.1155/2022/7207477 |
Ejemplares similares
-
Enhancing PM(2.5) Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model
por: Moursi, Ahmed Samy AbdElAziz, et al.
Publicado: (2022) -
SWT/JFace in action
por: Scarpino, Matthew
Publicado: (2005) -
PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
por: Zhang, Li, et al.
Publicado: (2023) -
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023) -
SWT: the standard widget toolkit
por: Northover, Steve, et al.
Publicado: (2004)