Cargando…

Process Optimization for Development of Guar Gum-Based Biodegradable Hydrogel Film Using Response Surface Methodology

In the current study, a guar-gum-based biodegradable hydrogel film was prepared using an initiator (potassium persulfate), crosslinker (N-N methyl bis acrylamide), and plasticizer (glycerol) for packaging of fruits and vegetables. The effect of independent variables (initiator, crosslinker, and plas...

Descripción completa

Detalles Bibliográficos
Autores principales: Aman, Junaid, Shahi, Navin Chandra, Lohani, Umesh Chandra, Balodhi, Divya, Singh, Rajat, Kumar, Naveen, Bhat, Mohd Ishfaq, Kumar, Avvaru Praveen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398876/
https://www.ncbi.nlm.nih.gov/pubmed/36016764
http://dx.doi.org/10.1155/2022/9180000
Descripción
Sumario:In the current study, a guar-gum-based biodegradable hydrogel film was prepared using an initiator (potassium persulfate), crosslinker (N-N methyl bis acrylamide), and plasticizer (glycerol) for packaging of fruits and vegetables. The effect of independent variables (initiator, crosslinker, and plasticizer) on the biodegradation (% wt. loss), color difference (ΔE), hardness (N), swelling index (%), and transparency (%) of the film was studied using Box–Behnken design, random surface methodology (RSM). The results showed significant effects on all the abovementioned parameters, and it was observed that the developed model was accurate, with a prediction error of only −3.19 to 2.99%. The optimized formulation for the preparation of hydrogel film was 0.15% initiator, 0.02% crosslinker, and 2.88% plasticizer exhibiting satisfactory biodegradability, color difference, hardness, swelling index, and transparency. Results showed that a guar-gum-based biodegradable hydrogel film has adequate physical, optical, and biodegradable properties and can be successfully utilized in the food packaging industry.