Cargando…
A processing-in-pixel-in-memory paradigm for resource-constrained TinyML applications
The demand to process vast amounts of data generated from state-of-the-art high resolution cameras has motivated novel energy-efficient on-device AI solutions. Visual data in such cameras are usually captured in analog voltages by a sensor pixel array, and then converted to the digital domain for su...
Autores principales: | Datta, Gourav, Kundu, Souvik, Yin, Zihan, Lakkireddy, Ravi Teja, Mathai, Joe, Jacob, Ajey P., Beerel, Peter A., Jaiswal, Akhilesh R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399136/ https://www.ncbi.nlm.nih.gov/pubmed/35999235 http://dx.doi.org/10.1038/s41598-022-17934-1 |
Ejemplares similares
-
TinyML
por: Warden, Pete
Publicado: (2019) -
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning
por: Alajlan, Norah N., et al.
Publicado: (2023) -
Neuromorphic-P(2)M: processing-in-pixel-in-memory paradigm for neuromorphic image sensors
por: Kaiser, Md Abdullah-Al, et al.
Publicado: (2023) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021) -
Smart Buildings: Water Leakage Detection Using TinyML
por: Atanane, Othmane, et al.
Publicado: (2023)