Cargando…
Feasibility of anomaly score detected with deep learning in irradiated breast cancer patients with reconstruction
The aim of this study is to evaluate cosmetic outcomes of the reconstructed breast in breast cancer patients, using anomaly score (AS) detected by generative adversarial network (GAN) deep learning algorithm. A total of 251 normal breast images from patients who underwent breast-conserving surgery w...
Autores principales: | Kim, Dong-Yun, Lee, Soo Jin, Kim, Eun-Kyu, Kang, Eunyoung, Heo, Chan Yeong, Jeong, Jae Hoon, Myung, Yujin, Kim, In Ah, Jang, Bum-Sup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399246/ https://www.ncbi.nlm.nih.gov/pubmed/35999451 http://dx.doi.org/10.1038/s41746-022-00671-0 |
Ejemplares similares
-
Author Correction: Feasibility of anomaly score detected with deep learning in irradiated breast cancer patients with reconstruction
por: Kim, Dong-Yun, et al.
Publicado: (2022) -
Objective assessment of flap volume changes and aesthetic results after adjuvant radiation therapy in patients undergoing immediate autologous breast reconstruction
por: Myung, Yujin, et al.
Publicado: (2018) -
Quantitative analysis of shoulder function and strength after breast reconstruction: A retrospective cohort study
por: Myung, Yujin, et al.
Publicado: (2018) -
Acellular dermal matrix and bone cement sandwich technique for chest wall reconstruction
por: Heo, Chan Yeong, et al.
Publicado: (2022) -
Validating machine learning approaches for prediction of donor related complication in microsurgical breast reconstruction: a retrospective cohort study
por: Myung, Yujin, et al.
Publicado: (2021)