Cargando…

Overcoming Perovskite Corrosion and De-Doping Through Chemical Binding of Halogen Bonds Toward Efficient and Stable Perovskite Solar Cells

4-tert-butylpyridine (TBP) is an indispensable additive for the hole transport layer in highly efficient perovskite solar cells (PSCs), while it can induce corrosion decomposition of perovskites and de-doping effect of spiro-OMeTAD, which present huge challenge for the stability of PSCs. Herein, hal...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Guanhua, Han, Wenbin, Zhang, Qiang, Li, Zhuowei, Deng, Yanyu, Liu, Chunyu, Guo, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399337/
https://www.ncbi.nlm.nih.gov/pubmed/35999406
http://dx.doi.org/10.1007/s40820-022-00916-3
Descripción
Sumario:4-tert-butylpyridine (TBP) is an indispensable additive for the hole transport layer in highly efficient perovskite solar cells (PSCs), while it can induce corrosion decomposition of perovskites and de-doping effect of spiro-OMeTAD, which present huge challenge for the stability of PSCs. Herein, halogen bonds provided by 1,4-diiodotetrafluorobenzene (1,4-DITFB) are employed to bond with TBP, simultaneously preventing perovskite decomposition and eliminating de-doping effect of oxidized spiro-OMeTAD. Various characterizations have proved strong chemical interaction forms between 1,4-DITFB and TBP. With the incorporation of halogen bonds, perovskite film can maintain initial morphology, crystal structure, and light absorbance; meanwhile, the spiro-OMeTAD film shows a relatively stable conductivity with good charge transport property. Accordingly, the device with TBP complex exhibits significantly enhanced stability in N(2) atmosphere or humidity environment. Furthermore, a champion power conversion efficiency of 23.03% is obtained since perovskite is no longer damaged by TBP during device preparation. This strategy overcomes the shortcomings of TBP in n-i-p PSCs community and enhances the application potential of spiro-OMeTAD in fabricating efficient and stable PSCs. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-022-00916-3.