Cargando…
Deep learning approaches for conformational flexibility and switching properties in protein design
Following the hugely successful application of deep learning methods to protein structure prediction, an increasing number of design methods seek to leverage generative models to design proteins with improved functionality over native proteins or novel structure and function. The inherent flexibilit...
Autores principales: | Rudden, Lucas S. P., Hijazi, Mahdi, Barth, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399439/ https://www.ncbi.nlm.nih.gov/pubmed/36032687 http://dx.doi.org/10.3389/fmolb.2022.928534 |
Ejemplares similares
-
Enhancing response of a protein conformational switch by using two disordered ligand binding domains
por: Sekhon, Harsimranjit, et al.
Publicado: (2023) -
DESP: Deep Enhanced Sampling of Proteins’ Conformation Spaces Using AI-Inspired Biasing Forces
por: Salawu, Emmanuel Oluwatobi
Publicado: (2021) -
Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image via Flexible Fitting Molecular Simulations
por: Fuchigami, Sotaro, et al.
Publicado: (2022) -
An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
por: Parks, Conor, et al.
Publicado: (2020) -
Free Energy Profiles Relating With Conformational Transition of the Switch Domains Induced by G12 Mutations in GTP-Bound KRAS
por: Chen, Jianzhong, et al.
Publicado: (2022)