Cargando…
Add-on individualizing prediction of nasopharyngeal carcinoma using deep-learning based on MRI: A multicentre, validation study
In nasopharyngeal carcinoma, deep-learning extracted signatures on MR images might be correlated with survival. In this study, we sought to develop an individualizing model using deep-learning MRI signatures and clinical data to predict survival and to estimate the benefit of induction chemotherapy...
Autores principales: | Cao, Xun, Chen, Xi, Lin, Zhuo-Chen, Liang, Chi-Xiong, Huang, Ying-Ying, Cai, Zhuo-Chen, Li, Jian-Peng, Gao, Ming-Yong, Mai, Hai-Qiang, Li, Chao-Feng, Guo, Xiang, Lyu, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399485/ https://www.ncbi.nlm.nih.gov/pubmed/36034225 http://dx.doi.org/10.1016/j.isci.2022.104841 |
Ejemplares similares
-
Incidence, consequences, and predictors of serious chemotherapy‐induced thrombocytopenia in nasopharyngeal carcinoma
por: Zhang, Lu‐Lu, et al.
Publicado: (2023) -
Widely targeted quantitative lipidomics and prognostic model reveal plasma lipid predictors for nasopharyngeal carcinoma
por: Chen, Xi, et al.
Publicado: (2023) -
Anatomical Partition‐Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme
por: Li, Song, et al.
Publicado: (2022) -
Deep learning pathological microscopic features in endemic nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy
por: Liu, Kuiyuan, et al.
Publicado: (2019) -
Short‐term efficacy and long‐term survival of nasopharyngeal carcinoma patients with radiographically visible residual disease following observation or additional intervention: A real‐world study in China
por: Huang, Ying‐Ying, et al.
Publicado: (2022)