Cargando…
Development and validation of a deep learning model to predict survival of patients with esophageal cancer
OBJECTIVE: To compare the performance of a deep learning survival network with the tumor, node, and metastasis (TNM) staging system in survival prediction and test the reliability of individual treatment recommendations provided by the network. METHODS: In this population-based cohort study, we deve...
Autores principales: | Huang, Chen, Dai, Yongmei, Chen, Qianshun, Chen, Hongchao, Lin, Yuanfeng, Wu, Jingyu, Xu, Xunyu, Chen, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399685/ https://www.ncbi.nlm.nih.gov/pubmed/36033454 http://dx.doi.org/10.3389/fonc.2022.971190 |
Ejemplares similares
-
Survival analysis and nomogram for pulmonary sarcomatoid carcinoma: an SEER analysis and external validation
por: Wu, Weishuai, et al.
Publicado: (2023) -
Serum and Serum Exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as Diagnostic Biomarkers for Lung Adenocarcinoma
por: Kang, Yanli, et al.
Publicado: (2022) -
A novel LASSO‐derived prognostic model predicting survival for non‐small cell lung cancer patients with M1a diseases
por: Chen, Hongchao, et al.
Publicado: (2022) -
Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 as novel diagnostic biomarkers for lung adenocarcinoma
por: You, Jianbin, et al.
Publicado: (2022) -
CYLD Promotes TNF-α-Induced Cell Necrosis Mediated by RIP-1 in Human Lung Cancer Cells
por: Lin, Xing, et al.
Publicado: (2016)