Cargando…
Occam’s razor gets a new edge: the use of symmetries in model selection
We demonstrate the power of using symmetries for model selection in the context of mechanistic modelling. We analyse two different models called the power law model (PLM) and the immunological model (IM) describing the increase in cancer risk with age, due to mutation accumulation or immunosenescenc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399699/ https://www.ncbi.nlm.nih.gov/pubmed/36000228 http://dx.doi.org/10.1098/rsif.2022.0324 |
_version_ | 1784772584654503936 |
---|---|
author | Borgqvist, Johannes G. Palmer, Sam |
author_facet | Borgqvist, Johannes G. Palmer, Sam |
author_sort | Borgqvist, Johannes G. |
collection | PubMed |
description | We demonstrate the power of using symmetries for model selection in the context of mechanistic modelling. We analyse two different models called the power law model (PLM) and the immunological model (IM) describing the increase in cancer risk with age, due to mutation accumulation or immunosenescence, respectively. The IM fits several cancer types better than the PLM implying that it would be selected based on minimizing residuals. However, recently a symmetry-based method for model selection has been developed, which has been successfully used in an in silico setting to find the correct model when traditional model fitting has failed. Here, we apply this method in a real-world setting to investigate the mechanisms of carcinogenesis. First, we derive distinct symmetry transformations of the two models and then we select the model which not only fits the original data but is also invariant under transformations by its symmetry. Contrary to the initial conclusion, we conclude that the PLM realistically describes the mechanism underlying the colon cancer dataset. These conclusions agree with experimental knowledge, and this work demonstrates how a model selection criterion based on biological properties can be implemented using symmetries. |
format | Online Article Text |
id | pubmed-9399699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93996992022-08-24 Occam’s razor gets a new edge: the use of symmetries in model selection Borgqvist, Johannes G. Palmer, Sam J R Soc Interface Life Sciences–Mathematics interface We demonstrate the power of using symmetries for model selection in the context of mechanistic modelling. We analyse two different models called the power law model (PLM) and the immunological model (IM) describing the increase in cancer risk with age, due to mutation accumulation or immunosenescence, respectively. The IM fits several cancer types better than the PLM implying that it would be selected based on minimizing residuals. However, recently a symmetry-based method for model selection has been developed, which has been successfully used in an in silico setting to find the correct model when traditional model fitting has failed. Here, we apply this method in a real-world setting to investigate the mechanisms of carcinogenesis. First, we derive distinct symmetry transformations of the two models and then we select the model which not only fits the original data but is also invariant under transformations by its symmetry. Contrary to the initial conclusion, we conclude that the PLM realistically describes the mechanism underlying the colon cancer dataset. These conclusions agree with experimental knowledge, and this work demonstrates how a model selection criterion based on biological properties can be implemented using symmetries. The Royal Society 2022-08-24 /pmc/articles/PMC9399699/ /pubmed/36000228 http://dx.doi.org/10.1098/rsif.2022.0324 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Life Sciences–Mathematics interface Borgqvist, Johannes G. Palmer, Sam Occam’s razor gets a new edge: the use of symmetries in model selection |
title | Occam’s razor gets a new edge: the use of symmetries in model selection |
title_full | Occam’s razor gets a new edge: the use of symmetries in model selection |
title_fullStr | Occam’s razor gets a new edge: the use of symmetries in model selection |
title_full_unstemmed | Occam’s razor gets a new edge: the use of symmetries in model selection |
title_short | Occam’s razor gets a new edge: the use of symmetries in model selection |
title_sort | occam’s razor gets a new edge: the use of symmetries in model selection |
topic | Life Sciences–Mathematics interface |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399699/ https://www.ncbi.nlm.nih.gov/pubmed/36000228 http://dx.doi.org/10.1098/rsif.2022.0324 |
work_keys_str_mv | AT borgqvistjohannesg occamsrazorgetsanewedgetheuseofsymmetriesinmodelselection AT palmersam occamsrazorgetsanewedgetheuseofsymmetriesinmodelselection |