Cargando…
Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change
Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host–parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399711/ https://www.ncbi.nlm.nih.gov/pubmed/36016913 http://dx.doi.org/10.1098/rsos.220060 |
_version_ | 1784772587044208640 |
---|---|
author | Peacock, Stephanie J. Kutz, Susan J. Hoar, Bryanne M. Molnár, Péter K. |
author_facet | Peacock, Stephanie J. Kutz, Susan J. Hoar, Bryanne M. Molnár, Péter K. |
author_sort | Peacock, Stephanie J. |
collection | PubMed |
description | Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host–parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to faster development of free-living parasite stages but also higher mortality. Interactions between behavioural plasticity of hosts and parasites will also influence transmission processes. We combined laboratory experiments and population modelling to understand the impacts of changing temperatures on barren-ground caribou (Rangifer tarandus) and their common helminth (Ostertagia gruehneri). We experimentally determined the thermal performance curves for mortality and development of free-living parasite stages and applied them in a spatial host–parasite model that also included behaviour of the parasite (propensity for arrested development in the host) and host (long-distance migration). Sensitivity analyses showed that thermal responses had less of an impact on simulated parasite burdens than expected, and the effect differed depending on parasite behaviour. The propensity for arrested development and host migration led to distinct spatio-temporal patterns in infection. These results emphasize the importance of considering behaviour—and behavioural plasticity—when projecting climate-change impacts on host–parasite systems. |
format | Online Article Text |
id | pubmed-9399711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93997112022-08-24 Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change Peacock, Stephanie J. Kutz, Susan J. Hoar, Bryanne M. Molnár, Péter K. R Soc Open Sci Ecology, Conservation and Global Change Biology Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host–parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to faster development of free-living parasite stages but also higher mortality. Interactions between behavioural plasticity of hosts and parasites will also influence transmission processes. We combined laboratory experiments and population modelling to understand the impacts of changing temperatures on barren-ground caribou (Rangifer tarandus) and their common helminth (Ostertagia gruehneri). We experimentally determined the thermal performance curves for mortality and development of free-living parasite stages and applied them in a spatial host–parasite model that also included behaviour of the parasite (propensity for arrested development in the host) and host (long-distance migration). Sensitivity analyses showed that thermal responses had less of an impact on simulated parasite burdens than expected, and the effect differed depending on parasite behaviour. The propensity for arrested development and host migration led to distinct spatio-temporal patterns in infection. These results emphasize the importance of considering behaviour—and behavioural plasticity—when projecting climate-change impacts on host–parasite systems. The Royal Society 2022-08-24 /pmc/articles/PMC9399711/ /pubmed/36016913 http://dx.doi.org/10.1098/rsos.220060 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology, Conservation and Global Change Biology Peacock, Stephanie J. Kutz, Susan J. Hoar, Bryanne M. Molnár, Péter K. Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title | Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title_full | Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title_fullStr | Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title_full_unstemmed | Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title_short | Behaviour is more important than thermal performance for an Arctic host–parasite system under climate change |
title_sort | behaviour is more important than thermal performance for an arctic host–parasite system under climate change |
topic | Ecology, Conservation and Global Change Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399711/ https://www.ncbi.nlm.nih.gov/pubmed/36016913 http://dx.doi.org/10.1098/rsos.220060 |
work_keys_str_mv | AT peacockstephaniej behaviourismoreimportantthanthermalperformanceforanarctichostparasitesystemunderclimatechange AT kutzsusanj behaviourismoreimportantthanthermalperformanceforanarctichostparasitesystemunderclimatechange AT hoarbryannem behaviourismoreimportantthanthermalperformanceforanarctichostparasitesystemunderclimatechange AT molnarpeterk behaviourismoreimportantthanthermalperformanceforanarctichostparasitesystemunderclimatechange |