Cargando…
Exploiting node metadata to predict interactions in bipartite networks using graph embedding and neural networks
Networks are increasingly used in various fields to represent systems with the aim of understanding the underlying rules governing observed interactions, and hence predict how the system is likely to behave in the future. Recent developments in network science highlight that accounting for node meta...
Autores principales: | Runghen, Rogini, Stouffer, Daniel B., Dalla Riva, Giulio V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399714/ https://www.ncbi.nlm.nih.gov/pubmed/36016910 http://dx.doi.org/10.1098/rsos.220079 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Martingales and the characteristic functions of absorption time on bipartite graphs
por: Monk, Travis, et al.
Publicado: (2021) -
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)