Cargando…
Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK biobank
Machine learning (ML) holds promise for precision psychiatry, but its predictive performance is unclear. We assessed whether ML provided added value over logistic regression for prediction of schizophrenia, and compared models built using polygenic risk scores (PRS) or clinical/demographic factors....
Autores principales: | Bracher-Smith, Matthew, Rees, Elliott, Menzies, Georgina, Walters, James T.R., O'Donovan, Michael C., Owen, Michael J., Kirov, George, Escott-Price, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publisher B. V
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399753/ https://www.ncbi.nlm.nih.gov/pubmed/35779327 http://dx.doi.org/10.1016/j.schres.2022.06.006 |
Ejemplares similares
-
Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank
por: Kendall, Kimberley M., et al.
Publicado: (2019) -
Effects of pathogenic CNVs on physical traits in participants of the UK Biobank
por: Owen, David, et al.
Publicado: (2018) -
Association of genetic liability for psychiatric disorders with
accelerometer-assessed physical activity in the UK Biobank
por: Dennison, Charlotte A., et al.
Publicado: (2021) -
Effects of genomic copy number variants penetrant for schizophrenia on cortical thickness and surface area in healthy individuals: analysis of the UK Biobank
por: Caseras, Xavier, et al.
Publicado: (2021) -
No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci
por: Escott-Price, Valentina, et al.
Publicado: (2015)