Cargando…
Emotion-Based Reinforcement Attention Network for Depression Detection on Social Media: Algorithm Development and Validation
BACKGROUND: Depression detection has recently received attention in the field of natural language processing. The task aims to detect users with depression based on their historical posts on social media. However, existing studies in this area use the entire historical posts of the users and select...
Autores principales: | Cui, Bin, Wang, Jian, Lin, Hongfei, Zhang, Yijia, Yang, Liang, Xu, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399877/ https://www.ncbi.nlm.nih.gov/pubmed/35943770 http://dx.doi.org/10.2196/37818 |
Ejemplares similares
-
Multifeature Fusion Attention Network for Suicide Risk Assessment Based on Social Media: Algorithm Development and Validation
por: Li, Jiacheng, et al.
Publicado: (2021) -
Depression Detection on Reddit With an Emotion-Based Attention Network: Algorithm Development and Validation
por: Ren, Lu, et al.
Publicado: (2021) -
Document-Level Biomedical Relation Extraction Using Graph Convolutional Network and Multihead Attention: Algorithm Development and Validation
por: Wang, Jian, et al.
Publicado: (2020) -
MHA: a multimodal hierarchical attention model for depression detection in social media
por: Li, Zepeng, et al.
Publicado: (2023) -
Validating daily social media macroscopes of emotions
por: Pellert, Max, et al.
Publicado: (2022)