Cargando…
Predicting Patient Wait Times by Using Highly Deidentified Data in Mental Health Care: Enhanced Machine Learning Approach
BACKGROUND: Wait times impact patient satisfaction, treatment effectiveness, and the efficiency of care that the patients receive. Wait time prediction in mental health is a complex task and is affected by the difficulty in predicting the required number of treatment sessions for outpatients, high n...
Autores principales: | Rastpour, Amir, McGregor, Carolyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399879/ https://www.ncbi.nlm.nih.gov/pubmed/35943774 http://dx.doi.org/10.2196/38428 |
Ejemplares similares
-
Respect, justice and learning are limited when patients are deidentified data subjects
por: Gross, Marielle S., et al.
Publicado: (2022) -
Implementation of a deidentified federated data network for population-based cohort discovery
por: Anderson, Nicholas, et al.
Publicado: (2011) -
Real-World Matching Performance of Deidentified Record-Linking Tokens
por: Bernstam, Elmer V., et al.
Publicado: (2022) -
A machine learning prediction model for waiting time to kidney transplant
por: Sapiertein Silva, Juliana Feiman, et al.
Publicado: (2021) -
Web-Based Application Based on Human-in-the-Loop Deep Learning for Deidentifying Free-Text Data in Electronic Medical Records: Development and Usability Study
por: Liu, Leibo, et al.
Publicado: (2023)