Cargando…
New Benchmark in DNA-Based Asymmetric Catalysis: Prevalence of Modified DNA/RNA Hybrid Systems
[Image: see text] By harnessing the chirality of the DNA double helix, chemists have been able to obtain new, reliable, selective, and environmentally friendly biohybrid catalytic systems with tailor-made functions. Nonetheless, despite all the advances made throughout the years in the field of DNA-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400053/ https://www.ncbi.nlm.nih.gov/pubmed/36032523 http://dx.doi.org/10.1021/jacsau.2c00271 |
Sumario: | [Image: see text] By harnessing the chirality of the DNA double helix, chemists have been able to obtain new, reliable, selective, and environmentally friendly biohybrid catalytic systems with tailor-made functions. Nonetheless, despite all the advances made throughout the years in the field of DNA-based asymmetric catalysis, many challenges still remain to be faced, in particular when it comes to designing a “universal” catalyst with broad reactivity and unprecedented selectivity. Rational design and rounds of selection have allowed us to approach this goal. We report here the development of a DNA/RNA hybrid catalytic system featuring a covalently attached bipyridine ligand, which exhibits unmatched levels of selectivity throughout the current DNA toolbox and opens new avenues in asymmetric catalysis. |
---|