Cargando…

Inferring potential landscapes from noisy trajectories of particles within an optical feedback trap

While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle’s position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryan, J. Shepard, Basak, Prithviraj, Bechhoefer, John, Pressé, Steve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400092/
https://www.ncbi.nlm.nih.gov/pubmed/36034218
http://dx.doi.org/10.1016/j.isci.2022.104731
Descripción
Sumario:While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle’s position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We develop a Bayesian method to infer potentials from trajectories corrupted by Markovian measurement noise without assuming prior functional form on the potentials. As an alternative to Gaussian process priors over potentials, we introduce structured kernel interpolation to the Natural Sciences which allows us to extend our analysis to large datasets. Structured-Kernel-Interpolation Priors for Potential Energy Reconstruction (SKIPPER) is validated on 1D and 2D experimental trajectories for particles in a feedback trap.