Cargando…
Inferring potential landscapes from noisy trajectories of particles within an optical feedback trap
While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle’s position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We deve...
Autores principales: | Bryan, J. Shepard, Basak, Prithviraj, Bechhoefer, John, Pressé, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400092/ https://www.ncbi.nlm.nih.gov/pubmed/36034218 http://dx.doi.org/10.1016/j.isci.2022.104731 |
Ejemplares similares
-
Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps
por: Gao, Xiaoqing, et al.
Publicado: (2022) -
Fast Bayesian inference of optical trap stiffness and particle diffusion
por: Bera, Sudipta, et al.
Publicado: (2017) -
Inferring sparse networks for noisy transient processes
por: Tran, Hoang M., et al.
Publicado: (2016) -
Inference and uncertainty quantification for noisy matrix completion
por: Chen, Yuxin, et al.
Publicado: (2019) -
Diffraction-Limited Molecular Cluster Quantification with Bayesian Nonparametrics
por: Bryan, J. Shepard, et al.
Publicado: (2022)