Cargando…

The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids

BACKGROUND: Karat (Musa troglodytarum L.) is an autotriploid Fe’i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of β-carotene. Karat fruit showed non...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhiying, Wang, Jiabin, Fu, Yunliu, Jing, Yonglin, Huang, Bilan, Chen, Ying, Wang, Qinglong, Wang, Xiao Bing, Meng, Chunyang, Yang, Qingquan, Xu, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400310/
https://www.ncbi.nlm.nih.gov/pubmed/36002843
http://dx.doi.org/10.1186/s12915-022-01391-3
_version_ 1784772715086872576
author Li, Zhiying
Wang, Jiabin
Fu, Yunliu
Jing, Yonglin
Huang, Bilan
Chen, Ying
Wang, Qinglong
Wang, Xiao Bing
Meng, Chunyang
Yang, Qingquan
Xu, Li
author_facet Li, Zhiying
Wang, Jiabin
Fu, Yunliu
Jing, Yonglin
Huang, Bilan
Chen, Ying
Wang, Qinglong
Wang, Xiao Bing
Meng, Chunyang
Yang, Qingquan
Xu, Li
author_sort Li, Zhiying
collection PubMed
description BACKGROUND: Karat (Musa troglodytarum L.) is an autotriploid Fe’i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of β-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS: Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, β-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS: The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01391-3.
format Online
Article
Text
id pubmed-9400310
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-94003102022-08-25 The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids Li, Zhiying Wang, Jiabin Fu, Yunliu Jing, Yonglin Huang, Bilan Chen, Ying Wang, Qinglong Wang, Xiao Bing Meng, Chunyang Yang, Qingquan Xu, Li BMC Biol Research Article BACKGROUND: Karat (Musa troglodytarum L.) is an autotriploid Fe’i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of β-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS: Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, β-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS: The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01391-3. BioMed Central 2022-08-24 /pmc/articles/PMC9400310/ /pubmed/36002843 http://dx.doi.org/10.1186/s12915-022-01391-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Li, Zhiying
Wang, Jiabin
Fu, Yunliu
Jing, Yonglin
Huang, Bilan
Chen, Ying
Wang, Qinglong
Wang, Xiao Bing
Meng, Chunyang
Yang, Qingquan
Xu, Li
The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title_full The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title_fullStr The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title_full_unstemmed The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title_short The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
title_sort musa troglodytarum l. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400310/
https://www.ncbi.nlm.nih.gov/pubmed/36002843
http://dx.doi.org/10.1186/s12915-022-01391-3
work_keys_str_mv AT lizhiying themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangjiabin themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT fuyunliu themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT jingyonglin themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT huangbilan themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT chenying themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangqinglong themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangxiaobing themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT mengchunyang themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT yangqingquan themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT xuli themusatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT lizhiying musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangjiabin musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT fuyunliu musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT jingyonglin musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT huangbilan musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT chenying musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangqinglong musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT wangxiaobing musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT mengchunyang musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT yangqingquan musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids
AT xuli musatroglodytarumlgenomeprovidesinsightsintothemechanismofnonclimactericbehaviourandenrichmentofcarotenoids