Cargando…
A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI
Conventional medical imaging and machine learning techniques are not perfect enough to correctly segment the brain tumor in MRI as the proper identification and segmentation of tumor borders are one of the most important criteria of tumor extraction. The existing approaches are time-consuming, incur...
Autores principales: | Haq, Ejaz Ul, Jianjun, Huang, Huarong, Xu, Li, Kang, Weng, Lifen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400402/ https://www.ncbi.nlm.nih.gov/pubmed/36035291 http://dx.doi.org/10.1155/2022/6446680 |
Ejemplares similares
-
MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers
por: Kang, Jaeyong, et al.
Publicado: (2021) -
A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal
por: Ullah, Amin, et al.
Publicado: (2021) -
Dual Deep CNN for Tumor Brain Classification
por: Al-Zoghby, Aya M., et al.
Publicado: (2023) -
Combining CNN Features with Voting Classifiers for Optimizing Performance of Brain Tumor Classification
por: Alturki, Nazik, et al.
Publicado: (2023) -
Three-Class Mammogram Classification Based on Descriptive CNN Features
por: Jadoon, M. Mohsin, et al.
Publicado: (2017)