Cargando…
Identification of Women with High Grade Histopathology Results after Conisation by Artificial Neural Networks
BACKGROUND: The aim of the study was to evaluate if artificial neural networks can predict high-grade histopathology results after conisation from risk factors and their combinations in patients undergoing conisation because of pathological changes on uterine cervix. PATIENTS AND METHODS: We analyse...
Autores principales: | Mlinaric, Marko, Krizmaric, Miljenko, Takac, Iztok, Repse Fokter, Alenka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400436/ https://www.ncbi.nlm.nih.gov/pubmed/35776841 http://dx.doi.org/10.2478/raon-2022-0023 |
Ejemplares similares
-
Diagnostic Performance of p16/Ki-67 Dual Immunostaining at Different Number of Positive Cells in Cervical Smears in Women Referred for Colposcopy
por: Gajsek, Ursula Salobir, et al.
Publicado: (2021) -
The Role of p16/Ki67 Dual Staining in Cervical Cancer Screening
por: Dovnik, Andraž, et al.
Publicado: (2023) -
Prognostic significance of uPA/PAI-1 level, HER2 status, and traditional histologic factors for survival in node-negative breast cancer patients
por: Dovnik, Nina Fokter, et al.
Publicado: (2016) -
Pregnancy outcome in women before and after cervical conisation: population based cohort study
por: Albrechtsen, Susanne, et al.
Publicado: (2008) -
CoNiSe(2) Nanostructures for Clean Energy
Production
por: Jansi Rani, Balasubramanian, et al.
Publicado: (2020)