Cargando…
Hardware-Mappable Cellular Neural Networks for Distributed Wavefront Detection in Next-Generation Cardiac Implants
Artificial intelligence algorithms are being adopted to analyze medical data, promising faster interpretation to support doctors’ diagnostics. The next frontier is to bring these powerful algorithms to implantable medical devices. Herein, a closed-loop solution is proposed, where a cellular neural n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400456/ https://www.ncbi.nlm.nih.gov/pubmed/36035592 http://dx.doi.org/10.1002/aisy.202200032 |
_version_ | 1784772746789519360 |
---|---|
author | Yang, Zhuolin Zhang, Lei Aras, Kedar Efimov, Igor R. Adam, Gina C. |
author_facet | Yang, Zhuolin Zhang, Lei Aras, Kedar Efimov, Igor R. Adam, Gina C. |
author_sort | Yang, Zhuolin |
collection | PubMed |
description | Artificial intelligence algorithms are being adopted to analyze medical data, promising faster interpretation to support doctors’ diagnostics. The next frontier is to bring these powerful algorithms to implantable medical devices. Herein, a closed-loop solution is proposed, where a cellular neural network is used to detect abnormal wavefronts and wavebrakes in cardiac signals recorded in human tissue is trained to achieve >96% accuracy, >92% precision, >99% specificity, and >93% sensitivity, when floating point precision weights are assumed. Unfortunately, the current hardware technologies for floating point precision are too bulky or energy intensive for compact standalone applications in medical implants. Emerging device technologies, such as memristors, can provide the compact and energy-efficient hardware fabric to support these efforts and can be reliably embedded with existing sensor and actuator platforms in implantable devices. A distributed design that considers the hardware limitations in terms of overhead and limited bit precision is also discussed. The proposed distributed solution can be easily adapted to other medical technologies that require compact and efficient computing, like wearable devices and lab-on-chip platforms. |
format | Online Article Text |
id | pubmed-9400456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-94004562023-08-01 Hardware-Mappable Cellular Neural Networks for Distributed Wavefront Detection in Next-Generation Cardiac Implants Yang, Zhuolin Zhang, Lei Aras, Kedar Efimov, Igor R. Adam, Gina C. Adv Intell Syst Article Artificial intelligence algorithms are being adopted to analyze medical data, promising faster interpretation to support doctors’ diagnostics. The next frontier is to bring these powerful algorithms to implantable medical devices. Herein, a closed-loop solution is proposed, where a cellular neural network is used to detect abnormal wavefronts and wavebrakes in cardiac signals recorded in human tissue is trained to achieve >96% accuracy, >92% precision, >99% specificity, and >93% sensitivity, when floating point precision weights are assumed. Unfortunately, the current hardware technologies for floating point precision are too bulky or energy intensive for compact standalone applications in medical implants. Emerging device technologies, such as memristors, can provide the compact and energy-efficient hardware fabric to support these efforts and can be reliably embedded with existing sensor and actuator platforms in implantable devices. A distributed design that considers the hardware limitations in terms of overhead and limited bit precision is also discussed. The proposed distributed solution can be easily adapted to other medical technologies that require compact and efficient computing, like wearable devices and lab-on-chip platforms. 2022-08 2022-05-12 /pmc/articles/PMC9400456/ /pubmed/36035592 http://dx.doi.org/10.1002/aisy.202200032 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the Creative Commons Attribution (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Yang, Zhuolin Zhang, Lei Aras, Kedar Efimov, Igor R. Adam, Gina C. Hardware-Mappable Cellular Neural Networks for Distributed Wavefront Detection in Next-Generation Cardiac Implants |
title | Hardware-Mappable Cellular Neural Networks for Distributed Wavefront
Detection in Next-Generation Cardiac Implants |
title_full | Hardware-Mappable Cellular Neural Networks for Distributed Wavefront
Detection in Next-Generation Cardiac Implants |
title_fullStr | Hardware-Mappable Cellular Neural Networks for Distributed Wavefront
Detection in Next-Generation Cardiac Implants |
title_full_unstemmed | Hardware-Mappable Cellular Neural Networks for Distributed Wavefront
Detection in Next-Generation Cardiac Implants |
title_short | Hardware-Mappable Cellular Neural Networks for Distributed Wavefront
Detection in Next-Generation Cardiac Implants |
title_sort | hardware-mappable cellular neural networks for distributed wavefront
detection in next-generation cardiac implants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400456/ https://www.ncbi.nlm.nih.gov/pubmed/36035592 http://dx.doi.org/10.1002/aisy.202200032 |
work_keys_str_mv | AT yangzhuolin hardwaremappablecellularneuralnetworksfordistributedwavefrontdetectioninnextgenerationcardiacimplants AT zhanglei hardwaremappablecellularneuralnetworksfordistributedwavefrontdetectioninnextgenerationcardiacimplants AT araskedar hardwaremappablecellularneuralnetworksfordistributedwavefrontdetectioninnextgenerationcardiacimplants AT efimovigorr hardwaremappablecellularneuralnetworksfordistributedwavefrontdetectioninnextgenerationcardiacimplants AT adamginac hardwaremappablecellularneuralnetworksfordistributedwavefrontdetectioninnextgenerationcardiacimplants |