Cargando…
Medical image fusion quality assessment based on conditional generative adversarial network
Multimodal medical image fusion (MMIF) has been proven to effectively improve the efficiency of disease diagnosis and treatment. However, few works have explored dedicated evaluation methods for MMIF. This paper proposes a novel quality assessment method for MMIF based on the conditional generative...
Autores principales: | Tang, Lu, Hui, Yu, Yang, Hang, Zhao, Yinghong, Tian, Chuangeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400712/ https://www.ncbi.nlm.nih.gov/pubmed/36033610 http://dx.doi.org/10.3389/fnins.2022.986153 |
Ejemplares similares
-
Application of conditional generative adversarial network to multi-step car-following modeling
por: Ma, Lijing, et al.
Publicado: (2023) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Research on the Modality Transfer Method of Brain Imaging Based on Generative Adversarial Network
por: Cheng, Dapeng, et al.
Publicado: (2021) -
Review of Generative Adversarial Networks in mono- and cross-modal biomedical image registration
por: Han, Tingting, et al.
Publicado: (2022) -
Counterfactual Explanation of Brain Activity Classifiers Using Image-To-Image Transfer by Generative Adversarial Network
por: Matsui, Teppei, et al.
Publicado: (2022)