Cargando…

A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride

Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen‐doped BN (BNO) could lower the band gap....

Descripción completa

Detalles Bibliográficos
Autores principales: Shankar, Ravi B., Mistry, Elan D. R., Lubert‐Perquel, Daphné, Nevjestic, Irena, Heutz, Sandrine, Petit, Camille
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400848/
https://www.ncbi.nlm.nih.gov/pubmed/35393663
http://dx.doi.org/10.1002/cphc.202100854
_version_ 1784772832520044544
author Shankar, Ravi B.
Mistry, Elan D. R.
Lubert‐Perquel, Daphné
Nevjestic, Irena
Heutz, Sandrine
Petit, Camille
author_facet Shankar, Ravi B.
Mistry, Elan D. R.
Lubert‐Perquel, Daphné
Nevjestic, Irena
Heutz, Sandrine
Petit, Camille
author_sort Shankar, Ravi B.
collection PubMed
description Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen‐doped BN (BNO) could lower the band gap. This is yet to be verified experimentally. We present herein a systematic experimental route to simultaneously tune BNO's chemical, magnetic and optoelectronic properties using a multivariate synthesis parameter space. We report deep visible range band gaps (1.50–2.90 eV) and tuning of the oxygen (2–14 at.%) and specific paramagnetic OB(3) contents (7–294 a.u. g(−1)). Through designing a response surface via a design of experiments (DOE) process, we have identified synthesis parameters influencing BNO's chemical, magnetic and optoelectronic properties. We also present model prediction equations relating these properties to the synthesis parameter space that we have validated experimentally. This methodology can help tailor and optimise BN materials for heterogeneous photocatalysis.
format Online
Article
Text
id pubmed-9400848
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94008482022-08-26 A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride Shankar, Ravi B. Mistry, Elan D. R. Lubert‐Perquel, Daphné Nevjestic, Irena Heutz, Sandrine Petit, Camille Chemphyschem Research Articles Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen‐doped BN (BNO) could lower the band gap. This is yet to be verified experimentally. We present herein a systematic experimental route to simultaneously tune BNO's chemical, magnetic and optoelectronic properties using a multivariate synthesis parameter space. We report deep visible range band gaps (1.50–2.90 eV) and tuning of the oxygen (2–14 at.%) and specific paramagnetic OB(3) contents (7–294 a.u. g(−1)). Through designing a response surface via a design of experiments (DOE) process, we have identified synthesis parameters influencing BNO's chemical, magnetic and optoelectronic properties. We also present model prediction equations relating these properties to the synthesis parameter space that we have validated experimentally. This methodology can help tailor and optimise BN materials for heterogeneous photocatalysis. John Wiley and Sons Inc. 2022-05-19 2022-07-05 /pmc/articles/PMC9400848/ /pubmed/35393663 http://dx.doi.org/10.1002/cphc.202100854 Text en © 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Shankar, Ravi B.
Mistry, Elan D. R.
Lubert‐Perquel, Daphné
Nevjestic, Irena
Heutz, Sandrine
Petit, Camille
A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title_full A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title_fullStr A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title_full_unstemmed A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title_short A Response Surface Model to Predict and Experimentally Tune the Chemical, Magnetic and Optoelectronic Properties of Oxygen‐Doped Boron Nitride
title_sort response surface model to predict and experimentally tune the chemical, magnetic and optoelectronic properties of oxygen‐doped boron nitride
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400848/
https://www.ncbi.nlm.nih.gov/pubmed/35393663
http://dx.doi.org/10.1002/cphc.202100854
work_keys_str_mv AT shankarravib aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT mistryelandr aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT lubertperqueldaphne aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT nevjesticirena aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT heutzsandrine aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT petitcamille aresponsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT shankarravib responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT mistryelandr responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT lubertperqueldaphne responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT nevjesticirena responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT heutzsandrine responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride
AT petitcamille responsesurfacemodeltopredictandexperimentallytunethechemicalmagneticandoptoelectronicpropertiesofoxygendopedboronnitride