Cargando…

A Deep Eutectic Solvent Thermomorphic Multiphasic System for Biocatalytic Applications

The applicability of a thermomorphic multiphasic system (TMS) composed of a hydrophobic deep eutectic solvent (DES) and an aqueous potassium phosphate buffer with a lower critical solution temperature (LCST) phase change for homogeneous biocatalysis was investigated. A lidocaine‐based DES with the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyer, Lars‐Erik, Andersen, Mads Bruno, Kara, Selin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400879/
https://www.ncbi.nlm.nih.gov/pubmed/35587655
http://dx.doi.org/10.1002/anie.202203823
Descripción
Sumario:The applicability of a thermomorphic multiphasic system (TMS) composed of a hydrophobic deep eutectic solvent (DES) and an aqueous potassium phosphate buffer with a lower critical solution temperature (LCST) phase change for homogeneous biocatalysis was investigated. A lidocaine‐based DES with the fatty acid oleic acid as a hydrogen‐bond donor was studied. Phase diagrams were determined and presented within this study. We tested different additional components to the solvent system and observed a decrease in the cloud point of approximately 0.026 °C per concentration unit. Distribution studies revealed a clear distribution of the protein in the aqueous buffer phase (>95 %), whereas the hydrophobic substrate and educt accumulated (>95 %) in the DES‐enriched layer. Finally, a reduction catalyzed by horse liver alcohol dehydrogenase was performed in a larger‐scale experiment, and the biocatalyst could be recycled by simply removing the DES phase for three recycling runs.