Cargando…
A Deep Eutectic Solvent Thermomorphic Multiphasic System for Biocatalytic Applications
The applicability of a thermomorphic multiphasic system (TMS) composed of a hydrophobic deep eutectic solvent (DES) and an aqueous potassium phosphate buffer with a lower critical solution temperature (LCST) phase change for homogeneous biocatalysis was investigated. A lidocaine‐based DES with the f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400879/ https://www.ncbi.nlm.nih.gov/pubmed/35587655 http://dx.doi.org/10.1002/anie.202203823 |
Sumario: | The applicability of a thermomorphic multiphasic system (TMS) composed of a hydrophobic deep eutectic solvent (DES) and an aqueous potassium phosphate buffer with a lower critical solution temperature (LCST) phase change for homogeneous biocatalysis was investigated. A lidocaine‐based DES with the fatty acid oleic acid as a hydrogen‐bond donor was studied. Phase diagrams were determined and presented within this study. We tested different additional components to the solvent system and observed a decrease in the cloud point of approximately 0.026 °C per concentration unit. Distribution studies revealed a clear distribution of the protein in the aqueous buffer phase (>95 %), whereas the hydrophobic substrate and educt accumulated (>95 %) in the DES‐enriched layer. Finally, a reduction catalyzed by horse liver alcohol dehydrogenase was performed in a larger‐scale experiment, and the biocatalyst could be recycled by simply removing the DES phase for three recycling runs. |
---|