Cargando…
Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation
The selective conversion of syngas to higher alcohols is an attractive albeit elusive route in the quest for effective production of chemicals from alternative carbon resources. We report the tandem integration of solid cobalt Fischer–Tropsch and molecular hydroformylation catalysts in a one‐pot slu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400900/ https://www.ncbi.nlm.nih.gov/pubmed/35491237 http://dx.doi.org/10.1002/anie.202201004 |
_version_ | 1784772847517827072 |
---|---|
author | Jeske, Kai Rösler, Thorsten Belleflamme, Maurice Rodenas, Tania Fischer, Nico Claeys, Michael Leitner, Walter Vorholt, Andreas J. Prieto, Gonzalo |
author_facet | Jeske, Kai Rösler, Thorsten Belleflamme, Maurice Rodenas, Tania Fischer, Nico Claeys, Michael Leitner, Walter Vorholt, Andreas J. Prieto, Gonzalo |
author_sort | Jeske, Kai |
collection | PubMed |
description | The selective conversion of syngas to higher alcohols is an attractive albeit elusive route in the quest for effective production of chemicals from alternative carbon resources. We report the tandem integration of solid cobalt Fischer–Tropsch and molecular hydroformylation catalysts in a one‐pot slurry‐phase process. Unprecedented selectivities (>50 wt %) to C(2+) alcohols are achieved at CO conversion levels >70 %, alongside negligible CO(2) side‐production. The efficient overall transformation is enabled by catalyst engineering, bridging gaps in operation temperature and intrinsic selectivity which have classically precluded integration of these reactions in a single conversion step. Swift capture of 1‐olefin Fischer–Tropsch primary products by the molecular hydroformylation catalyst, presumably within the pores of the solid catalyst is key for high alcohol selectivity. The results underscore that controlled cooperation between solid aggregate and soluble molecular metal catalysts, which pertain to traditionally dichotomic realms of heterogeneous and homogeneous catalysis, is a promising blueprint toward selective conversion processes. |
format | Online Article Text |
id | pubmed-9400900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94009002022-08-26 Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation Jeske, Kai Rösler, Thorsten Belleflamme, Maurice Rodenas, Tania Fischer, Nico Claeys, Michael Leitner, Walter Vorholt, Andreas J. Prieto, Gonzalo Angew Chem Int Ed Engl Research Articles The selective conversion of syngas to higher alcohols is an attractive albeit elusive route in the quest for effective production of chemicals from alternative carbon resources. We report the tandem integration of solid cobalt Fischer–Tropsch and molecular hydroformylation catalysts in a one‐pot slurry‐phase process. Unprecedented selectivities (>50 wt %) to C(2+) alcohols are achieved at CO conversion levels >70 %, alongside negligible CO(2) side‐production. The efficient overall transformation is enabled by catalyst engineering, bridging gaps in operation temperature and intrinsic selectivity which have classically precluded integration of these reactions in a single conversion step. Swift capture of 1‐olefin Fischer–Tropsch primary products by the molecular hydroformylation catalyst, presumably within the pores of the solid catalyst is key for high alcohol selectivity. The results underscore that controlled cooperation between solid aggregate and soluble molecular metal catalysts, which pertain to traditionally dichotomic realms of heterogeneous and homogeneous catalysis, is a promising blueprint toward selective conversion processes. John Wiley and Sons Inc. 2022-05-31 2022-08-01 /pmc/articles/PMC9400900/ /pubmed/35491237 http://dx.doi.org/10.1002/anie.202201004 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Jeske, Kai Rösler, Thorsten Belleflamme, Maurice Rodenas, Tania Fischer, Nico Claeys, Michael Leitner, Walter Vorholt, Andreas J. Prieto, Gonzalo Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title | Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title_full | Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title_fullStr | Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title_full_unstemmed | Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title_short | Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation |
title_sort | direct conversion of syngas to higher alcohols via tandem integration of fischer–tropsch synthesis and reductive hydroformylation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400900/ https://www.ncbi.nlm.nih.gov/pubmed/35491237 http://dx.doi.org/10.1002/anie.202201004 |
work_keys_str_mv | AT jeskekai directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT roslerthorsten directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT belleflammemaurice directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT rodenastania directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT fischernico directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT claeysmichael directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT leitnerwalter directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT vorholtandreasj directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation AT prietogonzalo directconversionofsyngastohigheralcoholsviatandemintegrationoffischertropschsynthesisandreductivehydroformylation |