Cargando…
Antibacterial Activity Prediction of Plant Secondary Metabolites Based on a Combined Approach of Graph Clustering and Deep Neural Network
The plants produce numerous types of secondary metabolites which have pharmacological importance in drug development for different diseases. Computational methods widely use the fingerprints of the metabolites to understand different properties and similarities among metabolites and for the predicti...
Autores principales: | Karim, Mohammad Bozlul, Kanaya, Shigehiko, Altaf‐Ul‐Amin, Md. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400908/ https://www.ncbi.nlm.nih.gov/pubmed/35014190 http://dx.doi.org/10.1002/minf.202100247 |
Ejemplares similares
-
Potential Arabidopsis thaliana glucosinolate genes identified from the co-expression modules using graph clustering approach
por: Harun, Sarahani, et al.
Publicado: (2021) -
Discovery of inflammatory bowel disease-associated miRNAs using a novel bipartite clustering approach
por: Altaf-Ul-Amin, Md., et al.
Publicado: (2020) -
Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters
por: Higa, Yuki, et al.
Publicado: (2020) -
Comprehensive Exploration of Target‐specific Ligands Using a Graph Convolution Neural Network
por: Miyazaki, Yu, et al.
Publicado: (2019) -
An integrative network-based approach to identify novel disease genes and pathways: a case study in the context of inflammatory bowel disease
por: Eguchi, Ryohei, et al.
Publicado: (2018)