Cargando…
Identification of the porcine IG-DMR and abnormal imprinting of DLK1-DIO3 in cloned pigs
Correct reprogramming of the DLK1-DIO3 imprinted region is critical for the development of cloned animals. However, in pigs, the imprinting and regulation of the DLK1-DIO3 region has not been systematically analyzed. The objective of this study was to investigate the imprinting status and methylatio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400927/ https://www.ncbi.nlm.nih.gov/pubmed/36036009 http://dx.doi.org/10.3389/fcell.2022.964045 |
Sumario: | Correct reprogramming of the DLK1-DIO3 imprinted region is critical for the development of cloned animals. However, in pigs, the imprinting and regulation of the DLK1-DIO3 region has not been systematically analyzed. The objective of this study was to investigate the imprinting status and methylation regulation of the DLK1-DIO3 region in wild-type and cloned neonatal pigs. We mapped the imprinting control region, IG-DMR, by homologous alignment and validated it in sperm, oocytes, fibroblasts, and parthenogenetic embryos. Subsequently, single nucleotide polymorphism-based sequencing and bisulfite sequencing polymerase chain reaction were conducted to analyze imprinting and methylation in different types of fibroblasts, as well as wild-type and cloned neonatal pigs. The results showed that Somatic cell nuclear transfer (SCNT) resulted in hypermethylation of the IG-DMR and aberrant gene expression in the DLK1-DIO3 region. Similar to wild-type pigs, imprinted expression and methylation were observed in the surviving cloned pigs, whereas in dead cloned pigs, the IG-DMR was hypermethylated and the expression of GTL2 was nearly undetectable. Our study reveals that abnormal imprinting of the DLK1-DIO3 region occurs in cloned pigs, which provides a theoretical basis for improving the cloning efficiency by gene editing to correct abnormal imprinting. |
---|