Cargando…

S,O‐Ligand Promoted meta‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis

Reversing the conventional site‐selectivity of C−H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O‐ligand for the meta‐C−H arylation of aryl ethers that significantly outper...

Descripción completa

Detalles Bibliográficos
Autores principales: Sukowski, Verena, van Borselen, Manuela, Mathew, Simon, Fernández‐Ibáñez, M. Ángeles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401001/
https://www.ncbi.nlm.nih.gov/pubmed/35639463
http://dx.doi.org/10.1002/anie.202201750
Descripción
Sumario:Reversing the conventional site‐selectivity of C−H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O‐ligand for the meta‐C−H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho‐substituted aryl ethers are well tolerated, overcoming the “ortho constraint”, which is the necessity to have a meta‐substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd‐complexes—before and after meta C−H activation—prior to evaluation of their respective catalytic activities.