Cargando…

Investigation of β‐Substitution Activity of O‐Acetylserine Sulfhydrolase from Citrullus vulgaris

Pyridoxal‐5’‐phosphate (PLP)‐dependent enzymes have garnered interest for their ability to synthesize non‐standard amino acids (nsAAs). One such class of enzymes, O‐acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l‐cysteine. Here, we examine the β‐substitution ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Jamorious L., Harrison, Isa Madrigal, Bingman, Craig A., Buller, Andrew R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401013/
https://www.ncbi.nlm.nih.gov/pubmed/35476889
http://dx.doi.org/10.1002/cbic.202200157
Descripción
Sumario:Pyridoxal‐5’‐phosphate (PLP)‐dependent enzymes have garnered interest for their ability to synthesize non‐standard amino acids (nsAAs). One such class of enzymes, O‐acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l‐cysteine. Here, we examine the β‐substitution capability of the OASS from Citrullus vulgaris (CvOASS), a putative l‐mimosine synthase. While the previously reported mimosine synthase activity was not reproducible in our hands, we successfully identified non‐native reactivity with a variety of O‐nucleophiles. Optimization of reaction conditions for carboxylate and phenolate substrates led to distinct conditions that were leveraged for the preparative‐scale synthesis of nsAAs. We further show this enzyme is capable of C−C bond formation through a β‐alkylation reaction with an activated nitroalkane. To facilitate understanding of this enzyme, we determined the crystal structure of the enzyme bound to PLP as the internal aldimine at 1.55 Å, revealing key features of the active site and providing information that may guide subsequent development of CvOASS as a practical biocatalyst.