Cargando…
Direct Visualisation of the Surface Atomic Active Sites of Carbon‐Supported Co(3)O(4) Nanocrystals via High‐Resolution Phase Restoration
The atomic arrangement of the terminating facets on spinel Co(3)O(4) nanocrystals is strongly linked to their catalytic performance. However, the spinel crystal structure offers multiple possible surface terminations depending on the synthesis. Thus, understanding the terminating surface atomic stru...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401059/ https://www.ncbi.nlm.nih.gov/pubmed/35476226 http://dx.doi.org/10.1002/cphc.202200031 |
Sumario: | The atomic arrangement of the terminating facets on spinel Co(3)O(4) nanocrystals is strongly linked to their catalytic performance. However, the spinel crystal structure offers multiple possible surface terminations depending on the synthesis. Thus, understanding the terminating surface atomic structure is essential in developing high‐performance Co(3)O(4) nanocrystals. In this work, we present direct atomic‐scale observation of the surface terminations of Co(3)O(4) nanoparticles supported on hollow carbon spheres (HCSs) using exit wavefunction reconstruction from aberration‐corrected transmission electron microscopy focal‐series. The restored high‐resolution phases show distinct resolved oxygen and cobalt atomic columns. The data show that the structure of {100}, {110}, and {111} facets of spinel Co(3)O(4) exhibit characteristic active sites for carbon monoxide (CO) adsorption, in agreement with density functional theory calculations. Of these facets, the {100} and {110} surface terminations are better suited for CO adsorption than the {111}. However, the presence of oxygen on the {111} surface termination indicates this facet also plays an essential role in CO adsorption. Our results demonstrate direct evidence of the surface termination atomic structure beyond the assumed stoichiometry of the surface. |
---|