Cargando…
First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries
Rechargeable magnesium‐ion batteries (MIBs) are a promising alternative to commercial lithium‐ion batteries (LIBs). They are safer to handle, environmentally more friendly, and provide a five‐time higher volumetric capacity (3832 mAh cm(−3)) than commercialized LIBs. However, the formation of a pass...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401065/ https://www.ncbi.nlm.nih.gov/pubmed/35353957 http://dx.doi.org/10.1002/cssc.202200414 |
_version_ | 1784772886782803968 |
---|---|
author | Fiesinger, Florian Gaissmaier, Daniel van den Borg, Matthias Jacob, Timo |
author_facet | Fiesinger, Florian Gaissmaier, Daniel van den Borg, Matthias Jacob, Timo |
author_sort | Fiesinger, Florian |
collection | PubMed |
description | Rechargeable magnesium‐ion batteries (MIBs) are a promising alternative to commercial lithium‐ion batteries (LIBs). They are safer to handle, environmentally more friendly, and provide a five‐time higher volumetric capacity (3832 mAh cm(−3)) than commercialized LIBs. However, the formation of a passivation layer on metallic Mg electrodes is still a major challenge towards their commercialization. Using density functional theory (DFT), the atomistic properties of metallic magnesium, mainly well‐selected self‐diffusion processes on perfect and imperfect Mg surfaces were investigated to better understand the initial surface growth phenomena. Subsequently, rate constants and activation temperatures of crucial diffusion processes on Mg(0001) and Mg(10 [Formula: see text] 1) were determined, providing preliminary insights into the surface kinetics of metallic Mg electrodes. The obtained DFT results provide a data set for parametrizing a force field for metallic Mg or performing kinetic Monte‐Carlo simulations. |
format | Online Article Text |
id | pubmed-9401065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94010652022-08-26 First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries Fiesinger, Florian Gaissmaier, Daniel van den Borg, Matthias Jacob, Timo ChemSusChem Research Articles Rechargeable magnesium‐ion batteries (MIBs) are a promising alternative to commercial lithium‐ion batteries (LIBs). They are safer to handle, environmentally more friendly, and provide a five‐time higher volumetric capacity (3832 mAh cm(−3)) than commercialized LIBs. However, the formation of a passivation layer on metallic Mg electrodes is still a major challenge towards their commercialization. Using density functional theory (DFT), the atomistic properties of metallic magnesium, mainly well‐selected self‐diffusion processes on perfect and imperfect Mg surfaces were investigated to better understand the initial surface growth phenomena. Subsequently, rate constants and activation temperatures of crucial diffusion processes on Mg(0001) and Mg(10 [Formula: see text] 1) were determined, providing preliminary insights into the surface kinetics of metallic Mg electrodes. The obtained DFT results provide a data set for parametrizing a force field for metallic Mg or performing kinetic Monte‐Carlo simulations. John Wiley and Sons Inc. 2022-05-18 2022-07-21 /pmc/articles/PMC9401065/ /pubmed/35353957 http://dx.doi.org/10.1002/cssc.202200414 Text en © 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Fiesinger, Florian Gaissmaier, Daniel van den Borg, Matthias Jacob, Timo First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title | First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title_full | First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title_fullStr | First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title_full_unstemmed | First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title_short | First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries |
title_sort | first‐principles studies on the atomistic properties of metallic magnesium as anode material in magnesium‐ion batteries |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401065/ https://www.ncbi.nlm.nih.gov/pubmed/35353957 http://dx.doi.org/10.1002/cssc.202200414 |
work_keys_str_mv | AT fiesingerflorian firstprinciplesstudiesontheatomisticpropertiesofmetallicmagnesiumasanodematerialinmagnesiumionbatteries AT gaissmaierdaniel firstprinciplesstudiesontheatomisticpropertiesofmetallicmagnesiumasanodematerialinmagnesiumionbatteries AT vandenborgmatthias firstprinciplesstudiesontheatomisticpropertiesofmetallicmagnesiumasanodematerialinmagnesiumionbatteries AT jacobtimo firstprinciplesstudiesontheatomisticpropertiesofmetallicmagnesiumasanodematerialinmagnesiumionbatteries |