Cargando…
RAt-CapsNet: A Deep Learning Network Utilizing Attention and Regional Information for Abnormality Detection in Wireless Capsule Endoscopy
Background: The emergence of wireless capsule endoscopy (WCE) has presented a viable non-invasive mean of identifying gastrointestinal diseases in the field of clinical gastroenterology. However, to overcome its extended time of manual inspection, a computer aided automatic detection system is getti...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401095/ https://www.ncbi.nlm.nih.gov/pubmed/36032311 http://dx.doi.org/10.1109/JTEHM.2022.3198819 |
Ejemplares similares
-
DA-CapsNet: dual attention mechanism capsule network
por: Huang, Wenkai, et al.
Publicado: (2020) -
Efficient-CapsNet: capsule network with self-attention routing
por: Mazzia, Vittorio, et al.
Publicado: (2021) -
CapsNet-SSP: multilane capsule network for predicting human saliva-secretory proteins
por: Du, Wei, et al.
Publicado: (2020) -
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
por: Yu, Minzhe, et al.
Publicado: (2021) -
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021)