Cargando…
A new outlier detection method for spherical data
In this study, we propose a new method to detect outlying observations in spherical data. The method is based on the k-nearest neighbours distance theory. The proposed method is a good alternative to the existing tests of discordancy for detecting outliers in spherical data. In addition, the new met...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401148/ https://www.ncbi.nlm.nih.gov/pubmed/36001611 http://dx.doi.org/10.1371/journal.pone.0273144 |
Sumario: | In this study, we propose a new method to detect outlying observations in spherical data. The method is based on the k-nearest neighbours distance theory. The proposed method is a good alternative to the existing tests of discordancy for detecting outliers in spherical data. In addition, the new method can be generalized to identify a patch of outliers in the data. We obtain the cut-off points and investigate the performance of the test statistic via simulation. The proposed test performs well in detecting a single and a patch of outliers in spherical data. As an illustration, we apply the method on an eye data set. |
---|